% Parameter file for modeling instationary heart circulation % Source: Hoppensteadt p. 53 + values for tclv/clv, tcrv/crv % to describe the dynamic behaviour of the heart ventricle. Time is given % in minutes and needs to be converted into seconds. clear all; close all; clc; % Resistances for the systemic and pulmonary part rs=17.5*60; rp=1.79*60; % Compliances for the systemic and pulmonary ateries/venes csa=0.00175; cpa=0.00412; csv=1.75; cpv=0.08; % Resistances for the left ventricle (in and out) rli=0.01*60; rlo=0.01*60; % Dynamic behaviour of the left ventricle compliance clvd=0.0146; clvs=3e-5; taus=0.0025; taud=0.0075; ts=0.005; td=0.0125-ts; t1=linspace(0,ts,50); clv1=clvd*(clvs/clvd).^((1-exp(-t1/taus))/(1-exp(-ts/taus))); t2=linspace(ts+eps,ts+td,50); clv2=clvs*(clvd/clvs).^((1-exp(-(t2-ts)/taud))/(1-exp(-td/taud))); tclv=[t1 t2]'*60; clv=[clv1 clv2]'; figure(1),plot(tclv,clv),xlabel('t_{CLV} [s]'),ylabel('c_{LV} [l/mmHg]'); % Resistances for the right ventricle (in and out) rri=0.01*60; rro=0.01*60; % Dynamic behaviour of the right ventricle compliance crvd=0.0365; crvs=0.0002; crv1=crvd*(crvs/crvd).^((1-exp(-t1/taus))/(1-exp(-ts/taus))); crv2=crvs*(crvd/crvs).^((1-exp(-(t2-ts)/taud))/(1-exp(-td/taud))); tcrv=[t1 t2]'*60; crv=[crv1 crv2]'; figure(2),plot(tcrv,crv),xlabel('t_{CRV} [s]'),ylabel('c_{RV} [l/mmHg]');